Challenging Al: Evaluating the Effect of MCTS-Driven Dynamic
Difficulty Adjustment on Player Enjoyment

Simon Demediuk
RMIT University
Melbourne, Australia
simon.demediuk@rmit.edu.au

Xiaodong Li
RMIT University
Melbourne, Australia
xiaodong li@rmit.edu.au

ABSTRACT

Providing a challenging Artificial Intelligent opponent is an im-
portant aspect of making video games enjoyable and immersive. A
game that is too easy, or conversely too hard may frustrate or bore
players. Dynamic Difficulty Adjustment is a method that aims at
improving the traditional methods of difficulty selection, by pro-
viding an opponent that tailors the challenge it presents to players
such that it is at an optimal level for them. This research presents a
player evaluation of three different Dynamic Difficulty Adjustment
approaches using Monte Carlo Tree Search and measures their im-
pact on player enjoyment, realism and perceived level of difficulty.
In particular, it investigates the effect that different win/loss ra-
tios, employed by Dynamic Difficulty Adjustment, have on player
enjoyment.

CCS CONCEPTS

« Computing methodologies — Artificial intelligence; Ma-
chine learning; - Human-centered computing — Human com-
puter interaction (HCI).

KEYWORDS

Dynamic Difficulty Adjustment, Monte Carlo Tree Search, Artificial
intelligence, Video Games

ACM Reference Format:

Simon Demediuk, Marco Tamassia, Xiaodong Li, and William L. Raffe.
2019. Challenging AI: Evaluating the Effect of MCTS-Driven Dynamic
Difficulty Adjustment on Player Enjoyment. In Proceedings of the Aus-
tralasian Computer Science Week Multiconference (ACSW ’19), January 29-31,
2019, Sydney, NSW, Australia. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3290688.3290748

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSW 19, January 29-31, 2019, Sydney, NSW, Australia

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6603-8/19/01...$15.00
https://doi.org/10.1145/3290688.3290748

Marco Tamassia
RMIT University
Melbourne, Australia
marco.tamassia@rmit.edu.au

William L. Raffe
University of Technology (UTS)
Sydney, Australia
william.raffe@uts.edu.au

1 INTRODUCTION

The video games industry reached over $100 Billion in revenue in
2017 [24]. In order to break into this competitive market, developers
need to ensure their games present the right level of challenge to
players in order to provide an enjoyable gaming experience.

There are a number of different ways in which current video
games present a level of challenge to the player. One way to do
this is by steadily increasing the difficulty of the levels of the game
as the player progresses. Another approach that game developers
use is to allow for the player to chose the difficulty of the game
by selecting it directly before the game begins i.e "easy”, "medium"
or "hard". While originally this only allowed for a few selections,
game developers have since developed methods to allow for a larger
variety of difficulty settings.

Both approaches, however, have a number of limitations. In the
case of selecting a difficulty before the game has begun the player
needs to have some assumptions about their current skill level
at the game in question, as well as assumptions about how the
developers assign the difficulty to the game. If these assumptions
are not correct, this can lead to some dissatisfaction with the game,
and depending on the game in question it may not be easy to switch
this difficulty once progress has been made by the player. A fixed
difficulty system also may not incorporate the skill level progression
of the player as they get better at the game.

Another limitation of both the increased level system and the
fixed difficulties is the jump between each, i.e going from one level
to another or from one difficulty setting to another. This jump needs
to be carefully calibrated, as a too big a jump will provide too much
of a challenge to players, too little a jump and there may be no
noticeable difference for the players. In both cases, the player may
become disengaged and frustrated with the game. This then leads
to another limitation which is, game developers need to group all
players into a very small number of different skill levels, and this
small grouping is likely to only satisfy the mean number of players.

In an early attempt to address these issues, Dynamic Difficulty
Adjustment [16] was introduced. Dynamic Difficulty Adjustment is
a method that allows for the level of challenge the game presents
to the player to be at the right level for them, and to adjust as their
skill level changes. This also allows for players to enter a state of
’Flow’ [11] in which the player becomes immersed and focused on

https://doi.org/10.1145/3290688.3290748
https://doi.org/10.1145/3290688.3290748
https://doi.org/10.1145/3290688.3290748

ACSW ’19, January 29-31, 2019, Sydney, NSW, Australia

the game [10]. The problem then becomes what is the right level of
challenge to present to the player.

Current Dynamic Difficulty Adjustment systems tend to aim for
a win/loss ratio for the player at 50% [3], and this is for good reason.
This level of challenge provides a fair game to the player. A fair
game is a concept from ranking systems such as Elo [13], wherein a
competitive game, a fair game represents either player being equally
likely to win. In earlier works Malone [21] suggests that a fair game
is motivating because it provides a challenge at an appropriate
difficulty level. Coupled with the findings from Yannakakis et al.
[28] that found empirically that a game’s entertainment factor was
at the highest when the game was set at an appropriate level of
challenge for the player. Targeting a win/loss ratio for players at
50% makes sense for Dynamic Difficulty Adjustment systems for
general video games.

In this paper, we present three Dynamic Difficulty Adjustment
approaches that employ MCTS and test these algorithms in a 2D
fighting game to understand the enjoyment, perceived difficulty
and realism aspects of the different methods in comparison to an
Al that is too difficult for the players. This work provides insights
into the understanding of what makes a challenging Al opponent.
In particular, the effect that different win/loss ratios, which the Dy-
namic Difficulty Adjustment agents target, have on the enjoyment
of the game for player.

2 RELATED WORK

The concept of flow in games is crucial for ensuring that a player is
immersed in the game. Cowley et al. [10] has applied Csikszentmi-
halyi’s “Flow theory” [11] to video games. Cowley states that the
player will continue to play and be interested in a game, so long
as they are immersed in it. Sweetser et al. [26] also worked with
Csikszentmihalyi’s “Flow theory” to develop a model for evaluating
games called GameFlow. It was used to predict the success of a game,
by evaluating the game with regard to the following attributes: con-
centration, challenge, player skill, control, clear goals, feedback,
immersion and social interaction. Although the work conducted by
Sweetser et al. refers primarily to the concept of immersion, rather
than challenge, definitions of immersion [8, 18] include challenge
as a fundamental part of what makes a game immersive. Providing
a challenging artificial opponent for a competitive game is required
to make the game enjoyable [1].

One way to provide a challenging opponent is to use a technique
known as Dynamic Difficulty Adjustment. An early implementation
of this is a system called Hamlet [16], which attempts to adjust the
difficulty of games during gameplay by controlling supply, demand,
and strength of the in-game inventory. Once a player is found to
be struggling in one area of the game, the system is able to modify
the game environment in a number of different ways: changing the
availability of in-game items, varying the strength of the player’s
weapons, and changing the gameplay of the enemies.

Yannakakis et al. [29] developed a Dynamic Difficulty Adjust-
ment agent through the implementation of an adaptive Al system
that used Bayesian networks to model the individual player. This
player model was then used by the adaptive system to modify the
artificial opponent. Avery et al. [5], and Bakkes et al. [6] also de-
veloped adaptive systems that can tailor the artificial opponent to

Demediuk et al.

the individual player. Avery et al. used co-evolutionary techniques,
where Bakkes et al. employed a form of supervised learning. Both
methods produce a suitable adaptive system, despite the fact that
they used different metrics to determine whether the artificial oppo-
nent was suitable for the individual. Whilst this is not an extensive
review of all the different approaches and techniques that have been
published over the years on DDA, these papers provide excellent
preliminary background information.

More recently there has been a push into Dynamic Difficulty
Adjustment agents that use Monte Carlo Tree Search [15, 20, 23, 30].
As Monte Carlo Tree Search has been improved over the years and
used successfully in complex games such as Go [14]. These MCTS
approaches focus on limitating computational aspects of MCTS
either through hardware, or expansion and simulation limitations.
Whilst these different approaches can be successful at producing
DDA agents in some game genres. Due to the limited computational
time of some real-time games these approaches can be less effective,
espically in cases where MCTS has very little time to process. In
Section 5 we introduce a different approach to DDA agents using
MCTS. The primary difference being our agents do not limit MCTS
in anyway, rather we change how MCTS builds it search tree and the
action selection policy MCTS uses. This allows for the maximum
allotted time for MCTS to always be utilised, finding the most
appropriate action. This approach is not limited to real-time games,
but can also easily applied to any MCTS based AI opponent.

3 BACKGROUND

Games with large state spaces, such as Chess and Go, result in search
spaces of prohibitive size. To deal with games of this kind, stochastic
tree-search techniques are used, which are called “Monte Carlo”
methods [22]. Monte Carlo methods do not completely explore a
sub-tree, which may take an infinite amount of time; instead, they
content themselves with randomly sampling parts of such subtrees
and using the average of such sample as an estimate for the value
of the entire sub-tree. Notice that this is only possible if a simulator
of the game is available, so that game simulations can be run.
There are few different ways of using this technique, such as:

e assuming the player also has a model of each opponent
player, which would help produce accurate simulations, but
is not realistic;

e assuming the other players perform random actions, which
is not very realistic since good players will choose better-
than—average actions;

e assuming that other players are perfectly rational and there-
fore run minimax (or its appropriate variation), which has
the disadvantage of requiring a complete tree exploration,
nullifying the advantages of Monte Carlo techniques.

A hybrid approach is to use the same principle of minimax until
a certain tree depth and only for deeper nodes using stochastic sim-
ulation to estimate values. This has the advantage of not requiring
the exploration of the full tree and provides a heuristic that does
not require domain expertise, making it a general technique.

Monte Carlo Tree-Search [9] further optimizes the minimax part
of said hybrid approach by using asymmetrical exploration (see
Figure 1). This is realized by progressively building the tree, and
exploring only sub-trees that look more promising according to

Evaluating the Effect of MCTS-Driven Dynamic Difficulty Adjustment on Player BGSWndat January 29-31, 2019, Sydney, NSW, Australia

Figure 1: Example of asymmetric tree [9].

Selectmn —> Expansion —— Simulation — Backpropagation ~

Tree Defaul!
Policy Policy
A
- A J

Figure 2: One iteration of the general MCTS approach [9]

the current estimates. In more detail, this is done by repeating four
steps (see Figure 2):

o Selection: the tree is descended from the root along the path
of the most promising actions according to the current esti-
mates until a leaf is reached.

o Expansion: if the leaf reached is above a certain depth thresh-
old, it is expanded by adding all possible actions as children.

o Simulation: the actions indicated by the path root-leaf are
run in the simulator, followed by a sequence of random
actions — up until the game ends or up to a certain length.

o Back-propagation: the value of the outcome of the simulation
(or a heuristic, if the simulation stopped before the end of
the game) is used to update the statistics of the nodes in the
path root-leaf.

This results in a tree that deepens over time and as such improve
the estimates of the values of its nodes with time. This gives MCTS
a useful advantage over minimax: it can run during an allotted time
and stop when an answer is needed, therefore maximizing the use
of time.

MCTS, as explained, has a problem: depending on how the
“promising node” is chosen, it may perform quite poorly. If the
Al naively chooses a promising node the node with the highest
value, it risks re-visiting the same path over and over, thereby

only improving the estimates of the nodes along said path. How-
ever, because initial estimates are just samples, there is a risk of
re-exploring a sub-optimal path while neglecting the optimal one.
This can happen if the initial value optimal path is set according to
an unlucky sample (e.g., one of the random actions for the player
is a particularly poor choice, which would make the sample look
worse than it actually is), or if the initial value of another path is
set according to a lucky sample (e.g., one of the random actions for
the opponent is a particularly poor choice, making the sample look
better than it actually is).

A better way of choosing a “promising node” is to use UCT [19].
UCT stands for UCB1 applied to Trees, where UCB1 stands for
Upper Confidence Bound [4]. UCB1 minimises a measure called
“regret” in “bandits”, which can be thought as depth-1 trees. Regret is
the difference between the reward that could be earned by choosing
optimally and the reward that was actually earned.

K
RN = p'n—pj Z E [Tj(m)] @
i1

where p* is the best possible expected reward, E [T](n)] denotes
the expected number of plays for action j and K is the number of
actions.

This is implemented by adding to the value of a node a number
that increases the more sibling nodes are visited and decreases the
more the node itself is visited. The UCB1 formula is as follows:

2lnn

UCB1 = X; ()

nj
where)_(j is the average reward from action j, n; is the number of
times action j was tried and n is the overall number of plays so far.
UCT generalises UCBI to trees, where the behaviour of UCB1
in deeper, recently created nodes causes a drift in the probability
distribution of rewards. UCT is proved to also minimise regret and
minimally changes the UCB1 formula:

In Inn
UCT=X; j+2C (3)
nj
where)_(j is the average reward from action j, n; is the number of
times action j was tried at the node, n is the sum of n; for all actions
and Cp > 0 is a constant.

4 FIGHTINGICE

To investigate the enjoyment of different Dynamic Difficulty Adjust-
ment agents we chose to use a 2D fighting game, FightingICE[17].
FightingICE is a game developed primarily for research purposes in
this genre. A 2D fighting game is one in which two opposing play-
ers fight each other in a 2-dimensional arena. Famous games in this
genre are Street Fighter[27] and Mortal Kombat[7]. In this game,
players attempt to reduce the opponent’s total health to zero before
their health is reduced to zero or the time runs out. In the latter case,
the player with the most health wins. To achieve this players use a
variety of different attacks; punches, kicks, and fireballs. Players
can also move around the arena by walking or jumping, and can
also block incoming attacks. Usually, one game consists of a best
out of three rounds format.

ACSW ’19, January 29-31, 2019, Sydney, NSW, Australia

E!Wl best action
:'\J H H
Current | S
state N ’
lsz

Max .

Ofs, aj

Figure 3: Challenge Sensitive Action Selection [2]

5 DYNAMIC DIFFICULTY ADJUSTMENT

Using Monte Carlo Tree Search, we built three Dynamic Difficulty
Adjustment agents, which we call adaptive Al opponents, for the
2D fighting game FightingICE. These agents are all based on the
idea that an ’ideal’ challenging game in one in which each player
has a 50% chance to win, on average the players should draw. For a
2D fighting game, a draw occurs when both players simultaneously
reduce each others health to 0 or the total amount of health of both
players is the same when time expires. Based on this information
each of the adaptive Al opponents in this work aim to ensure
that the health differential between the player and the adaptive Al
opponent is as close to 0 as possible. Each agent is given a fixed
amount of search time, search depth and simulation frames, based
the distance from the player. In close (< 150 pixels) agents get 2
frames of time to search, search depth is set at 2 and 40 simulation
frames. At a distance (> 150 pixels) agents get 6 frames of time to
search, search depth is set at 8 and 60 simulation frames.

5.1 Challenge Sensitive Action Selection

The first adaptive Al opponent that we are testing in this work is
based off Challenge Sensitive Action Selection [3]. This method of
Dynamic Difficulty Adjustment uses Reinforcement Learning [25]
to build a Q-table, off-line, of state-action pairs. For each state, it
ranks the actions based on the Q-value of the actions (see Figure 3.1t
begins the game by selecting the mean ranked action for the initial
state and continues to play this rank of action for each state until the
game is re-evaluated after a fixed number of actions. Based on the
health differential between the player and the adaptive Al opponent,
the rank of the action selected for the next cycle is changed, with
the aim to keep the health differential as close to 0 as possible. If the
player is at higher health then the adaptive Al opponent, the action
rank is increased up by one rank, thus increasing the difficulty. If
the player is at lower health than the adaptive Al opponent, the
action rank is decreased by one rank, thus decreasing the difficulty.
Actions with the same rank are chosen at random. This process
then repeats each evaluation cycle.

Using this methodology for the action selection policy, we de-
signed a new DDA agent that replaces Reinforcement Learning with

Demediuk et al.

Adaptive True ROSAS

Node score

0

-MAX_HP -|orig. HP diff. 0 +|orig. HP diff.| +MAX_HP
HP difference

Figure 4: Score metric used by Adaptive True ROSAS

MCTS-UCT to perform the tree building in real-time. The actions
where ranked based on the assigned node score from the MCTS
process. The actions are selected in a similar way with the adaptive
Al opponent again choosing the mean action, to begin with, and
changing the rank of the action selected after each evaluation cycle.
In our case, the evaluation cycle was every 9 seconds.

5.2 Reactive Outcome Sensitive Action
Selection

Reactive Outcome Sensitive Action Selection (ROSAS) [12] is the
next agent in this work that we are testing. Similar to CSAS, this
agent also uses MCTS-UCT to build a search tree, by which the
playouts are performed and evaluated to the standard MCTS-UCT
method. The scoring metric of the nodes is proportional to the
total possible health point differential between the player and the
agent (normalised to be between 0 and 1 for UCT), with a health
point differential of 0 resulting in a node score of 0.5. Rather then
selecting the node with the highest node score, ROSAS employs a
different action selection policy, choosing the action that leads to a
node score closets to 0.5:

. .]0.5—r[a].score if r[a].score < 0.5
action = arg min) , (4)
r[a].score — 0.5 otherwise
where r is the root node of the tree and r[a] is the child of r corre-

sponding to action a. This is the distance from the score of 0.5.

5.3 Adaptive True Reactive Outcome Sensitive
Action Selection

The final Dynamic Difficulty Adjustment Agent that we are test-
ing is Adaptive True Reactive Outcome Sensitive Action Selection
(ATROSAS). This is an extension to True ROSAS [12]. The weak-
ness with the first two algorithms is that MCTS builds the search
tree asymmetrically, with actions that are stronger explored more.
This means that there may be a very shallow exploration of the
actions at the rank or node score of interest, meaning they may not
be a true reflection of what will happen once that action is selected.
ATROSAS leverages the strength of the asymmetric search tree

Evaluating the Effect of MCTS-Driven Dynamic Difficulty Adjustment on Player BGSWndat January 29-31, 2019, Sydney, NSW, Australia

by changing the areas that are explored more, by changing the
scoring metric in the node evaluation of MCTS. We do this with
the variables of the health difference before the action and after
the action is performed and incorporate this into the node score
according to:
Y2X 0 < HP difference < |orig. HP diff.|
node.score = { £=X if |orig. HP diff.| < HP difference < 0 , (5)

0 otherwise

where x is the HP difference after the action and y is the HP dif-
ference before the action. Figure 4 shows the node score metric
function used by ATROSAS. ATROSAS can now use the standard
MCTS action selection policy, as the best action is now the one that
results in a 0 health point differential.

6 EXPERIMENTAL SETUP

To test the various Dynamic Difficulty Adjustment agents we con-
ducted a human trial. In this trial, the human players played 1 game
(three timed rounds) against each of the Dynamic Difficulty Ad-
justment agents, CSAS, ROSAS, and ATROSAS as well as a game
against MCTS-UCT with standard node evaluation and action selec-
tion policies. Each round lasted 90 seconds and players began with
500 health points. We had 31 total participants. Each participant
was given an initial questionnaire to find their age, gender, famil-
iarity and skill level within the 2D fighting game genre (see Table
1. The participants did not know which agent they were playing
against in each game during the trial. At the end of each game, the
participants were asked the following questions:

e On a scale of 1-5 how difficult was this opponent? (1
being least difficult, 5 being most difficult): This ques-
tion was used to gauge the perceived level of difficulty of
each of the agents. The ideal level of challenge would be for
players to score the agents a 3 in this category, implying the
agent was not to difficult and not too easy. We expect the
pure MCTS-UCT to be the most difficult agent.

e On a scale of 1-5 how enjoyable was this opponent?
(1 being least enjoyable, 5 being most enjoyable): This
question was aimed at developing an understanding of the
enjoyment level of the agents. We would expect the Dynamic
Difficulty Adjustment agents to be the most enjoyable, and
ATROSAS to perform the best.

e On a scale of 1-5 how realistic did you find the perfor-
mance of this agent? (1 being least realistic, 5 being
most realistic): With this question, we want to find out
how realistic the agents were. An issue with many types of
Al opponents adaptive or not, is they feel very artificial and
playing against an unrealistic opponent can break game flow
and immersion.

7 RESULTS AND DISCUSSION

After the trial, we collated the data for each of the games played and
the corresponding answers to the questionnaires. We calculated the
win percentages of each of the agents, shown in Table 2, to see if
the agents were able to achieve the desired win percentage of 50%.
As expected we observe that the MCTS-UCT had an extremely high
win rate, this was not surprising as it was not trying to adapt to the
player, rather, playing the game at the hardest possible difficulty

Sex | No. Age No. | Familiarity | No. Skill No.

5 (Most 5 (High
M| 25| 2080 20] pamiliar) 0| skil 3
F 6 30-40 8 4 0 4 11
40-50 2 3 16 3 12
50+ 1 2 10 2 2
1 (Least 5 1 (Low 3

Familiar Skill)

Table 1: Pre-game questionnaire responses

Agent Average Win %
CSAS 40.860
ROSAS 46.335
ATROSAS 51.075
MCTS-UCT 90.323

Table 2: Win percentage of the agents vs. the human players

Difficulty

4.5 1

Difficulty
N w w »
U =} e <)
I
I
I

N
o
!

1.5 1

1.0 A

S S S S
oo Q\OSP < Q\OC’P “\C(
S

Al

Figure 5: Violin plots of questionnaire responses to per-
ceived difficulty (1 being least difficult, 5 being most diffi-
cult)

setting. ATROSAS had the closest win percentage nearest to the
target of 50%, beating out both CSAS and ROSAS. As mentioned
previously, this because ATROSAS takes advantage of how MCTS
builds the search tree, and the actions that are most relevant get
the most search time. This makes the outcomes of the actions it
selects more accurate at achieving the target when compared to
over the other two agents.

Figure 5, 6, and 7 are violin plots of the questionnaire responses
after each game. The blue area in the plot is the actual distribution
of the answers, where the mean answer is shown in red and the
median is shown in green.

If we analyse these responses we can see that from Figure 5 the
MCTS-UCT agent was the most difficult with the mean response at
~ 4.7 (5 being the most difficult) and the distribution of responses

ACSW ’19, January 29-31, 2019, Sydney, NSW, Australia

Enjoyment

5.0 1

4.5 4

4.0 —

3.5 1 ==

Enjoyment
w
o
I
I

2.51

2.01 ==

Figure 6: Violin plots of questionnaire responses to game en-
joyment (1 being least enjoyable, 5 being most enjoyable)

Realism

5.0 1

4.5 1

4.0 1 — —

3.5 1

304 — —

Realism

2.5 A

2.0 A

1.5 1

1.0 A

S <5
< Q\OSP V‘\C
1N

Al

Figure 7: Violin plots of questionnaire responses to realism
of opponent 1 being least realistic, 5 being most realistic)

closely packed around this number. MCTS-UCT was also the least
enjoyable agent to play against (Figure 6) with a mean response of
~ 2.4 (with 1 being the least enjoyable). This gives strength to the
argument that if a game is too hard players will find it less enjoyable.
In terms of realism, the distribution of answers is more uniform
suggesting that it was hard to gauge how realistic the agent was,

Demediuk et al.

this may have been an effect of the agent being very aggressive and
fast-paced, which can be hard to interpret for newer players of the
genre.

The questionnaire responses to the agents were surprising. Play-
ers found that the ROSAS (mean of = 3.3) and CSAS (mean of ~ 3.2)
agents on average to be at the right level of difficulty, see Figure 5.
It is arguable that ROSAS is the better agent in this respect as its
distribution is more centered around the mean, with CSAS distri-
bution being more uniform across the range of responses. Whilst
ATROSAS is a stronger algorithm (targets a win percentage closer
to 50%) it is curious that people found it more difficult than CSAS
and ROSAS. This could be caused by the fact that it better matched
the health point difference and thus the players were never able to
gain any real advantage against it, thus making it feel more difficult.
This brings into question whether or not a win percentage of 50%
which most DDA systems target really is the ideal level of challenge
for non-competitive games.

When we investigate enjoyment (Figure 6) we find that ROSAS
was the most enjoyable agent to play against (mean of =~ 3.9, with
5 being the most enjoyable). The distribution of responses is again
closely packed around this number, indicating that this is a more ac-
curate result, then the means of the CSAS and ATROSAS. Whilst this
agent didn’t track the target win percentage as well as ATROSAS
it was a more enjoyable agent to play against. We speculate that
this may be caused by the fact that the agent doesn’t track as well
the health point difference, which may give a sense of a lead to the
player, making it more enjoyable. In terms of realism, ROSAS is the
most realistic agent (mean of ~ 3.7, with 5 the most realistic, see
Figure 7). Unlike the other agents, its distribution is centered more
around its mean, giving more confidence to this result.

From these results, we can see that a win percentage of 50%
is not the ideal level of challenge when it comes to enjoyment.
It may be that whilst a 50% win ratio produces a fair game in a
competitive environment when playing non-competitively this may
not be the best if enjoyment is more of a concern. However, if the
win percentage is too low which is the case for CSAS this may also
result in a less enjoyable agent as it is too easy to beat. Finding the
ideal win/loss ratio may also vary from genre to genre.

8 CONCLUSION AND FUTURE WORK

It is interesting that the most enjoyable and realistic Dynamic Diffi-
culty Adjustment agent was not the best performing agent in terms
of win percentage target. The ROSAS agent was perceived to be at
the right level of challenge for the players, we speculate that this
was caused by the fact that it had a slightly lower win percentage
than 50%. This work attempts to investigate the question: what is
the best level of challenge for a video game in a non-competitive
environment? This is not a simple question to answer, although we
find that win/loss ratio 50% is not ideal, understanding the motiva-
tions and the reasons behind why the player is playing the game
in the first place need to be explored, before a "definitive" win/loss
ratio can be found.

Understanding the motivations of the players, and the reasoning
behind why they are playing the game is a step that is commonly
overlooked by much of the research in the Dynamic Difficulty
Adjustment field. More research is needed in this area to better

Evaluating the Effect of MCTS-Driven Dynamic Difficulty Adjustment on Player BGSWndat January 29-31, 2019, Sydney, NSW, Australia

understand what is the ideal level of challenge when it comes to
making an enjoyable video game. In future work we plan to change
how Adaptive True ROSAS (as it is the strongest agent at achieving
the target outcomes) works such that it can target different win/loss
ratios. This can be achieved by altering the shape of the curve (see
Figure 4), through a change in health point difference targets. This
will enable further investigation into the correlation between win
percentage and enjoyment. Coupled with more detailed question-
naires, to learn more about the motivations of players, we aim to
find a more definitive level of challenge for developers of Dynamic
Difficulty Adjustment agents in non-competitive games.

9 ACKNOWLEDGEMENTS

This work is funded by the Digital Creativity Labs (www. digitalcre-
ativity.ac.uk), jointly funded by EPSRC/AHRC/InnovateUK [grant
number EP/M023265/1].

REFERENCES

[1] Amy L Alexander, Tad Brunyé, Jason Sidman, and Shawn A Weil. 2005. From
gaming to training: A review of studies on fidelity, immersion, presence, and buy-
in and their effects on transfer in pc-based simulations and games. DARWARS
Training Impact Group 5 (2005), 1-14.

Gustavo Andrade, Geber Ramalho, Hugo Santana, and Vincent Corruble. 2005.
Challenge-sensitive action selection: an application to game balancing. In In-
telligent Agent Technology, IEEE/WIC/ACM International Conference on. IEEE,
194-200.

[3] Gustavo Andrade, Geber Ramalho, Hugo Santana, and Vincent Corruble. 2005.
Extending reinforcement learning to provide dynamic game balancing. In Pro-
ceedings of the Workshop on Reasoning, Representation, and Learning in Computer
Games, 19th International Joint Conference on Artificial Intelligence (IJCAI). 7-12.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235-256.

[5] Phillipa M Avery and Zbigniew Michalewicz. 2010. Adapting to human gamers
using coevolution. In Advances in Machine Learning II. Springer, 75-100.

[6] Sander Bakkes, Pieter Spronck, and Jaap van den Herik. 2009. Rapid and reliable
adaptation of video game AL Computational Intelligence and Al in Games, IEEE
Transactions on 1, 2 (2009), 93-104.

[7] Ed Boon and Tobias John. 1992. Mortal Combat. Game [Arcade]. Midway Games,
Chicago, Illinois, U.S.

[8] Emily Brown and Paul Cairns. 2004. A grounded investigation of game immersion.
In CHI'04 extended abstracts on Human factors in computing systems. ACM, 1297—
1300.

[9] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and Al in games 4, 1 (2012), 1-43.

[10] Ben Cowley, Darryl Charles, Michaela Black, and Ray Hickey. 2008. Toward an

understanding of flow in video games. Computers in Entertainment (CIE) 6, 2

(2008), 20.

Mihaly Csikszentmihalyi. 2008. Flow : the psychology of optimal experience (1st

harper perennial modern classics ed. ed.). Harper Perennial, New York.

[12] Simon Demediuk, Marco Tamassia, William L. Raffe, Zambetta Fabio, Xiaodong

Li, and Florian “Floyd” Mueller. 2017. Monte Carlo Tree Search Based Algorithms

for Dynamic Difficulty Adjustment. In Computational Intelligence and Games

(CIG), 2017 IEEE Conference on. IEEE.

AE Elo. 1961. New USCF rating system. Chess Life 16 (1961), 160-161.

Sylvain Gelly and David Silver. 2011. Monte-Carlo tree search and rapid action

value estimation in computer Go. Artificial Intelligence 175 (2011), 1856-1875.

http://www.sciencedirect.com/science/article/pii/S000437021100052X

[15] Ya’nan Hao, Suoju He, Junping Wang, Xiao Liu, Wan Huang, et al. 2010. Dynamic
difficulty adjustment of game AI by MCTS for the game Pac-Man. In Natural
Computation (ICNC), 2010 Sixth International Conference on, Vol. 8. IEEE, 3918-
3922.

[16] Robin Hunicke and Vernell Chapman. 2004. Al for dynamic difficulty adjustment
in games. In Challenges in Game Artificial Intelligence AAAI Workshop. 91-96.

[17] Ritsumeikan University Intelligent Computer Entertainment Lab. 2017. Fighting

Game AI Competition. http://www.ice.ci.ritsumei.ac.jp/ figaic/ (2017).

Charlene Jennett, Anna L Cox, Paul Cairns, Samira Dhoparee, Andrew Epps,

Tim Tijs, and Alison Walton. 2008. Measuring and defining the experience of

immersion in games. International journal of human-computer studies 66, 9 (2008),

641-661.

[2

—

(11

[13
[14

[18

[19] Levente Kocsis and Csaba Szepesvari. 2006. Bandit based monte-carlo planning.
In European conference on machine learning. Springer, 282-293.

[20] Xinyu Li, Suoju He, Yue Dong, Qing Liu, Xiao Liu, Yiwen Fu, Zhiyuan Shi, and
Wan Huang. 2010. To create DDA by the Approach of ANN from UCT-Created
Data. In Computer Application and System Modeling (ICCASM), 2010 International
Conference on, Vol. 8. IEEE, V8-475.

[21] Thomas W Malone. 1980. What makes things fun to learn? Heuristics for de-
signing instructional computer games. In Proceedings of the 3rd ACM SIGSMALL
symposium and the first SIGPC symposium on Small systems. ACM, 162-169.

[22] Christopher Z Mooney. 1997. Monte carlo simulation. Vol. 116. Sage Publications.

[23] Lingdao Sha, Souju He, Junping Wang, Jiajian Yang, Yuan Gao, Yidan Zhang,
and Xinrui Yu. 2010. Creating appropriate challenge level game opponent by the
use of dynamic difficulty adjustment. In Natural Computation (ICNC), 2010 Sixth
International Conference on, Vol. 8. IEEE, 3897-3901.

[24] SuperData. 2017. Market Brief - 2017 Digital Games & Interactive Media Year in

Review. https://www.superdataresearch.com/

Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-

duction. Vol. 1. MIT press Cambridge.

Penelope Sweetser and Peta Wyeth. 2005. GameFlow: a model for evaluating

player enjoyment in games. Computers in Entertainment (CIE) 3, 3 (2005), 3-3.

Takashi Nishiyama. 1987. Street Fighter. Game [Arcade]. CAPMCOM, Osaka,

Japan.

Georgios N Yannakakis and John Hallam. 2006. Towards capturing and enhancing

entertainment in computer games. In Hellenic Conference on Artificial Intelligence.

Springer, 432-442.

Georgios N Yannakakis and Manolis Maragoudakis. 2005. Player modeling impact

on player’s entertainment in computer games. In User Modeling 2005. Springer,

74-78.

Alexander Zook, Brent Harrison, and Mark O Riedl. 2015. Monte-carlo tree search

for simulation-based strategy analysis. In Proceedings of the 10th Conference on

the Foundations of Digital Games.

[25

[26

[27

[28

™
20,

[30

http://www.sciencedirect.com/science/article/pii/S000437021100052X
https://www.superdataresearch.com/

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 FightingICE
	5 Dynamic Difficulty Adjustment
	5.1 Challenge Sensitive Action Selection
	5.2 Reactive Outcome Sensitive Action Selection
	5.3 Adaptive True Reactive Outcome Sensitive Action Selection

	6 Experimental Setup
	7 Results and Discussion
	8 Conclusion and Future Work
	9 Acknowledgements
	References

